Actions

Actions are one of the latest features incorporated. They provide simple but powerful tools to create code snippets that can be easily shared and executed in the browser.

Actions are ideal for applications that require real time interaction. Moreover, they are executed using WebAssembly, which provides a high level of freedom when it comes to sharing, using and creating them.


Defining an Action

In the simplest way possible, an action is defined as a function with the reserved name action and the client as a parameter.

def action(shimoku_client: Client):
    #code [...]
    shimoku_client.run()

Then, on your main Python file, it is necessary to add the following code to create the action instance.

indicator_action_id = shimoku_client.actions.create_action(
    name="Your action name",
    code=open("MyAction.py", "r").read(),
    overwrite=True,
)

Snackbars

Actions provide a snackbar based method of communication on the frontend. It is useful to express different stages in the process and even handling errors. These snackbars can portray information, success or an error.

def action(shimoku_client: Client):

    global_front_end_connection.snackbar_info(
        "Starting action"
    )
    #code [...]
    
    if variable1 is None: #let variable be any important value
        global_front_end_connection.snackbar_error("Variable1 must have a value!")
        return
    
    global_front_end_connection.snackbar_info("Plotting the results")
    #plotting code [...]
    
    shimoku_client.run()
    global_front_end_connection.snackbar_success(
        "End of action"
    )

Implementation Examples

Simple Indicator Update

In example, we will create one of the simplest features in order to really showcase how do actions work and why are they useful.

It is simply a counter that sums 1 every time it is clicked and updates an indicator. It is useful to demonstrate the interactivity upgrade actions provide, specially for future, more complex, features.


Firstly, we will create the action Python file. In this case, it will be named increment_indicator_action.py.

from shimoku import Client
from shimoku.actions_execution.front_connection import global_front_end_connection


def action(shimoku_client: Client):
    global_front_end_connection.snackbar_info(
        "Action of Increment Indicator has started"
    )
    shimoku_client.set_menu_path("Actions", "Increment Indicator")

    indicator = shimoku_client.plt.get_component_by_order(1)
    if indicator:
        indicator_value = indicator["properties"]["value"]
    else:
        indicator_value = 0

    global_front_end_connection.snackbar_info(
        "Updating the indicator value"
    )
    shimoku_client.plt.indicator(
        data={'title': 'Actions Indicator', 'value': indicator_value + 1},
        order=1,
        cols_size=2
    )

    shimoku_client.run()
    global_front_end_connection.snackbar_success(
        "Action of Increment Indicator has ended"
    )

Next, it is important to create the instance of the action and, hence, its button on the main file.

import time
import os
from os import getenv
from io import StringIO

import numpy as np
import pandas as pd
from shimoku import Client

initial_time = time.time()

universe_id: str = getenv("UNIVERSE_ID")
workspace_id: str = getenv("WORKSPACE_ID")
access_token: str = getenv("SHIMOKU_TOKEN")
shimoku_client = Client(
    universe_id=universe_id,
    access_token=access_token,
    environment='develop',
    verbosity="INFO",
    async_execution=True,
)
shimoku_client.set_workspace(workspace_id)
shimoku_client.set_menu_path("Actions", "Increment Indicator")

#indicator action instance
indicator_action_id = shimoku_client.actions.create_action(
    name="Increment Indicator",
    code=open("increment_indicator_action.py", "r").read(),
    overwrite=True,
)

#indicator action button
shimoku_client.plt.action_button(
    order=0,
    action_id=indicator_action_id,
    label="Increment Indicator",
    cols_size=1,
    rows_size=1,
)

Damping Harmonic Oscillator

In this example, a visual representation of the relation between zeta an omega in an 'Damping Harmonic Oscillator' (a spring) is showcased using an action. The physics simulation itself is besides our point, but demonstrates the power of the action tools.


Once again, start by creating the action Python file. In this case, it is named spring_action.py.

import numpy as np
from numpy import array, pi
import pandas as pd

#shimoku necessary libraries
from shimoku import Client
from shimoku.actions_execution.front_connection import global_front_end_connection

# physics calculations

Nt = 1000
t = np.linspace(0.0, 10.0, Nt)
dt = t[1] - t[0]  # Time step


def ode(X: array, zeta: float = 0.05, omega0: float = 2.0 * pi) -> array:
    x, dotx = X
    ddotx = -2 * zeta * omega0 * dotx - omega0**2 * x
    return array([dotx, ddotx])


def rk4_step(X: array, zeta: float, omega0: float, loc_dt: array) -> array:
    k1 = ode(X, zeta, omega0)
    k2 = ode(X + 0.5 * k1 * loc_dt, zeta, omega0)
    k3 = ode(X + 0.5 * k2 * loc_dt, zeta, omega0)
    k4 = ode(X + k3 * loc_dt, zeta, omega0)
    return X + (k1 + 2 * k2 + 2 * k3 + k4) * loc_dt / 6


def update(zeta: float = 0.05, omega0: float = 2.0 * pi):
    X = np.array([1.0, 0.0])
    values = [X[0]]
    for _ in range(1, Nt):
        X = rk4_step(X, zeta, omega0, dt)
        values.append(X[0])
    return values


# defining the action

def action(shimoku_client: Client):
    global_front_end_connection.snackbar_info(
        "Beginning action of Damping Harmonic Oscillator"
    )
    shimoku_client.set_menu_path("Actions", "Damping Harmonic Oscillator")

    input_form_values = shimoku_client.plt.get_input_forms()[0]["data"]
    zeta = float(input_form_values["zeta"])
    omega0 = float(input_form_values["omega0"])
    if zeta < 0:
        global_front_end_connection.snackbar_error("Zeta can not be negative")
        return
    if omega0 < 0:
        global_front_end_connection.snackbar_error("Omega can not be negative")
        return
    

    y = update(zeta=zeta, omega0=omega0)
    df = pd.DataFrame(t, columns=["Time"])
    df["Value"] = y

    global_front_end_connection.snackbar_info("Plotting the results")
    shimoku_client.plt.line(
        data=df, order=2, x="Time", y="Value", rows_size=2, cols_size=12
    )

    shimoku_client.run()
    global_front_end_connection.snackbar_success(
        "End of action of Damping Harmonic Oscillator"
    )

As previously explained, it will be necessary to add the instance of the action and its button on the main Python file.

#previous main file code [...]
shimoku_client.set_menu_path("Actions", "Damping Harmonic Oscillator")

#damping oscillator action instance
spring_action_id = shimoku_client.actions.create_action(
    name="Spring Visualization",
    code=open("spring_action.py", "r").read(),
    overwrite=True,
)

#damping oscillator action button
shimoku_client.plt.generate_input_form_groups(
    order=0,
    action_id=spring_action_id,
    form_groups={
        "Spring Param Values": [
            {
                "mapping": "zeta",
                "fieldName": "zeta",
                "inputType": "number",
                "sizeColumns": 2,
            },
            {
                "mapping": "omega0",
                "fieldName": "omega0",
                "inputType": "number",
                "sizeColumns": 2,
            }
        ]
    }
)

Linear Regression

In this example, the creation of a Linear Regression will be shown, implemented using Sklearn libraries. Here, it is showcased how the actions can empower you to use AI tools.


In the same way as the other two examples, create the action Python file. This on is named linear_regression_action.py.

from shimoku import Client
from shimoku.actions_execution.front_connection import global_front_end_connection
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import pandas as pd


def action(shimoku_client: Client):
    global_front_end_connection.snackbar_info(
        "Linear regression action has started"
    )
    shimoku_client.set_menu_path("Actions", "Linear Regression")
    input_form_values = shimoku_client.plt.get_input_forms()[0]["data"]

    n_samples = int(input_form_values["n_samples"] or 100)
    noise = float(input_form_values["noise"] or 15)
    random_state = int(input_form_values["random_state"] or 42)

    # Generate a random regression problem
    X, y = make_regression(n_samples=n_samples, n_features=1, noise=noise, random_state=random_state)

    # Split the dataset into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=random_state)

    # Initialize and train the linear regression model
    model = LinearRegression()
    model.fit(X_train, y_train)

    # Predictions
    y_pred = model.predict(X_test)

    global_front_end_connection.snackbar_info(
        "Generating the plot"
    )
    shimoku_client.plt.free_echarts(
        data=pd.DataFrame({"x": X_test.flatten(), "y_test": y_test, "y_pred": y_pred}),
        fields=[("x", "y_test"), ("x", "y_pred")],
        order=1,
        options={
            "title": {
                "text": "Linear Regression Model Performance"
            },
            "tooltip": {
                "trigger": "axis",
                "axisPointer": {
                    "type": "cross"
                }
            },
            "xAxis": {
                "type": "value",
                "name": "Feature Value"
            },
            "yAxis": {
                "type": "value",
                "name": "Target Value"
            },
            "legend": {
                "data": ["Training data", "Testing data", "Model prediction"]
            },
            "series": [
                {
                    "name": "Testing data",
                    "type": "scatter",
                    "data": "#set_data#",
                    "color": "green"
                },
                {
                    "name": "Model prediction",
                    "type": "line",
                    "data": "#set_data#",
                    "color": "red",
                    "itemStyle": {
                        "opacity": 0
                    }
                }
            ]
        }
    )
    shimoku_client.run()
    global_front_end_connection.snackbar_sucess(
        "Linear regression action has ended"
    )

Intuitively, it will be necessary to add the action instance and button to the main Python file.

#previous main file code [...]
shimoku_client.set_menu_path("Actions", "Linear Regression")

#damping oscillator action instance
linear_regression_action_id = shimoku_client.actions.create_action(
    name="Linear Regression",
    code=open("linear_regression_action.py", "r").read(),
    overwrite=True,
    libraries=["scikit-learn"],
)

#damping oscillator action button
shimoku_client.plt.generate_input_form_groups(
    order=0,
    action_id=linear_regression_action_id,
    form_groups={
        "Spring Param Values": [
            {
                "mapping": "n_samples",
                "fieldName": "#Samples",
                "inputType": "number",
                "sizeColumns": 2,
            },
            {
                "mapping": "noise",
                "fieldName": "Noise",
                "inputType": "number",
                "sizeColumns": 2,
            },
            {
                "mapping": "random_state",
                "fieldName": "Random State",
                "inputType": "number",
                "sizeColumns": 2,
            }
        ]
    }
)

Requests

This example shows how you could use external requests in your actions:


First create the action file, name it requests_action.py.

from shimoku import Client
from shimoku.actions_execution.front_connection import global_front_end_connection


def action(shimoku_client: Client):
    global_front_end_connection.snackbar_info(
        "Action of Cat Facts Started"
    )
    cat_fact_1 = shimoku_client.request("GET", "https://catfact.ninja/fact")["fact"]
    print(cat_fact_1)
    cat_fact_2 = shimoku_client.request("GET", "https://catfact.ninja/fact")["fact"]
    print(cat_fact_2)
    global_front_end_connection.snackbar_info(
        "Cat Facts Retrieved"
    )
    shimoku_client.set_menu_path("Cat Facts")
              
    shimoku_client.plt.html("<h1>Cat Fact</h1>", order=1)
    shimoku_client.plt.html(f"<p>{cat_fact_1}</p>", order=2)

    shimoku_client.plt.html(f"<h1>Another Cat Fact</h1>", order=3)
    shimoku_client.plt.html(f"<p>{cat_fact_2}</p>", order=4)

    shimoku_client.run()
    global_front_end_connection.snackbar_success(
        "Action of Cat Facts Finished"
    )

To make it work in the platform you can use a button that calls the action:

#previous main file code [...]
shimoku_client.set_menu_path("Actions", "Requests")

#requests action instance
requests_action_id = shimoku_client.actions.create_action(
    name="Requests",
    code=open("requests_action.py", "r").read(),
    overwrite=True,
)

#requests action button
shimoku_client.plt.action_button(
    order=0,
    action_id=requests_action_id,
    label="Requests",
    cols_size=1,
    rows_size=1,
)

Handling Errors

It is usual having errors when using a new tool. For that reason it has been created a series of common errors to help you understand the nomenclature and structure of an action, while also troubleshoot your code in case of error. If your specific error can not be found down below, visit our mockable tests guide on GitHub here for more detailed and technical guidance.


Actions must always have the client parameter, annotated and in this specific format: shimoku_client: Client

Furthermore, an action can not be defined in a class.

#CORRECT WAY
def action(shimoku_client: Client):  
    pass
    

#INCORRECT WAYS
#ERROR1
def action(): # always add the client parameter
    pass

#ERROR2
def action(shimoku_client): # always annotate the clietn variable
    pass
    
#ERROR3   
def action(shimoku_client: int): # the client variable must be of type Client
    pass
    
#ERROR4
def action(shimo: Client):  # the client variable must be named shimoku_client
    pass
    
#ERROR5
def action(shimoku_client: Client, value1):  # cannot use arbitrary variables as params
    pass
    
#ERROR6
class UsesClient:
    def action(self, shimoku_client: Client):  # cannot declare the action in a class
        pass

There has to exist an action and it can not be redefined in the same file.

#ERROR7
def action(shimoku_client: Client):  
    pass

def action(shimoku_client: Client):  
    pass

#ERROR8
    #no action declared

In terms of libraries, always import the client using the following specific format: from shimoku import Client. Furthermore, the asyncio library and its functionalities can not be imported.

#CORRECT WAY
from shimoku import Client

def action(shimoku_client: Client):
    pass

#ERROR9
from shimoku import Client
import asyncio

#ERROR10
from shimoku import Client
from asyncio import sleep

#ERROR11
from shimoku import Client as whatever

It is crucial to maintain the integrity of Client. Here are some errors that do not respect that integrity.

#ERROR12
def action(shimoku_client: Client):
    use_s(other_param=shimoku_client)  #cannot use other params for the client variable
    
#ERROR13
def use_s(shimoku_client: Client):
    return shimoku_client  #cannot return the client

#ERROR14
shimoku_client = 6 #cannot reassign the client variable
def action(shimoku_client: Client):
    pass
    
#ERROR15
variable = Client() #cannot create another client
def action(shimoku_client: Client):
    pass

#ERROR16
from shimoku import Client as shimo  # cannot rename the client

def action(shimoku_client: shimo):
    pass

Last updated