Shimoku docs
  • 🚀QuickStart
    • Installation & Setup
    • Minimal APP example
    • Extended Example
    • Templates & tutorials
  • 🤖Artificial Intelligence
    • Classification
      • Train Classification
        • Train Classification Outputs
      • Predict Classification
        • Predict Classification Outputs
    • Generate Insights
      • Generate Insights Outputs
  • 🛠️Building Web App
    • Environment
      • Overview
      • Environment Variables
    • Management
      • Managing Universes
      • Managing Workspaces
      • Managing Boards
    • Menu
      • Changing the Menu Path
      • Updating the Menu Path
      • Deleting the Menu Path
    • Grid
      • Using the Grid
    • Theming
      • Colors Usage
    • Actions
    • Modals
    • IO
  • 💡Elements
    • Summary
    • Charts
      • Table
        • Buttons Column
        • Filters
        • Search bars
        • Colored labels
      • HTML
        • Raw HTML
        • Beautiful Titles
        • Background Indicators
        • Click to New Tab
        • Box With Button
        • Panel
      • Indicators
        • Indicator
        • Grouped Indicators
        • Vertical Indicators
        • Color by Value
        • Gauge Indicator
        • Indicators with Header
      • Scatter Charts
        • Scatter
        • Scatter with Effect
      • Line Charts
        • Line
        • Predictive Line
        • Segmented Line
        • Marked Line
        • Line With Confidence Area
        • Top Bottom Line Charts
        • Summary Line
      • Area Charts
        • Area
        • Stacked Area
        • Segmented Area
        • Top Bottom Area Charts
      • Bar Charts
        • Bar
        • Stacked Bar
        • Horizontal Bar
        • Stacked Horizontal Bar
        • Zero Centered Bar
      • Pie Charts
        • Pie
        • Doughnut
        • Rose
      • Gauge Charts
        • Shimoku Gauge
        • Speed Gauge
      • Input forms
        • Group chained Inputs
        • List input search
        • Conditional inputs
        • Audio input
        • Drag & Drop
      • Line and Bar
      • Waterfall
      • Annotated Chart
      • Heatmap
      • Radar
      • Sunburst
      • Tree
      • Treemap
      • Sankey Diagram
      • Funnel chart
      • iFrame
    • Composite Template Charts
      • Infographics text bubble
      • Chart and Modal Button
      • Chart and Indicators
    • Data Sets
      • Data Set Filters
    • Create your own charts
      • Free Echarts
      • Bento box
    • Features & Navigation
      • Tabs
      • History navigation & Breadcrumb
  • 🔍Advanced usage
    • CLI
    • Workflow Triggers
    • Code Generation
  • 🌍Cloud & Community
    • Shimoku Cloud
    • Shared links
    • Handling Workspaces & Users
      • User authentication
      • Inviting users
      • Creating users
      • Users with multi-workspace access
  • 🌐Releases
    • 2024
      • v.2.6
      • v.2.5
      • v.2.4
      • v.2.3
        • v.2.3.1
      • v.2.2
        • v.2.2.3
        • v.2.2.2
        • v.2.2.1
      • v.2.1
        • v.2.1.2
        • v.2.1.1
      • v.2.0
        • v.2.0.(1..4)
      • v.1.6
        • v.1.6.1
      • v.1.5
    • 2023
      • v.1.4
        • v.1.4.1
        • v.1.4.2
      • v.1.3
      • v.1.2
        • v.1.2.1
      • v.1.1
        • v.1.1.1
      • v.1.0
        • v.1.0.2
        • v.1.0.1
      • v.0.20
      • v.0.19
      • v.0.18
      • v.0.17
        • v.0.17.1
      • v.0.16
        • v.0.16.3
        • v.0.16.2
        • v.0.16.1
      • v.0.15
      • v.0.14
    • 2022
      • v.0.13
        • v.0.13.3
      • v.0.12
      • v.0.11
      • v.0.10
        • v.0.10.4
        • v.0.10.3
        • v.0.10.1
      • v.0.9
      • v.0.8
      • v.0.7
        • v.0.7.1
      • v.0.6
      • v.0.5
      • v.0.4
      • v.0.3
        • v0.3.2
        • v0.3.1
      • v.0.2
Powered by GitBook
On this page
  • The Method To Use
  • Examples
  • Variants

Was this helpful?

  1. Elements
  2. Charts

Line and Bar

This hybrid chart fuses the visual appeal of both line and bar graphs. While the line graph depicts the trend or continuous data, the bars offer a clear representation of discrete data points. The dual y-axis design facilitates the comparison of two related but differently scaled sets of data. This configuration is especially helpful when one wants to showcase a correlation or interaction between two distinct yet interconnected data sets.

The Method To Use

The method is s.plt.line_and_bar_charts()

It must contain the following input variables:

order: int
x: str
data: Union[str, DataFrame, List[Dict]]

And accepts the following input variables as optional:

bar_names: Optional[List[str]] = None
line_names: Optional[List[str]] = None
x_axis_name: Optional[str] = None
bar_axis_name: Optional[str] = None
bar_suffix: Optional[str] = None,
line_axis_name: Optional[str] = None
line_suffix: Optional[str] = None
title: Optional[str] = None
rows_size: Optional[int] = None
cols_size: Optional[int] = None
padding: Optional[List[int]] = None
option_modifications: Optional[Dict] = None
variant: Optional[str] = None

Examples

The following code:

data = [
    {'day': 'Mon', 'Evaporation': 2.0, 'Precipitation': 2.6, 'Temperature': 2.0},
    {'day': 'Tue', 'Evaporation': 4.9, 'Precipitation': 5.9, 'Temperature': 2.2},
    {'day': 'Wed', 'Evaporation': 7.0, 'Precipitation': 9.0, 'Temperature': 3.3},
    {'day': 'Thu', 'Evaporation': 23.2, 'Precipitation': 26.4, 'Temperature': 4.5},
    {'day': 'Fri', 'Evaporation': 25.6, 'Precipitation': 28.7, 'Temperature': 6.3},
    {'day': 'Sat', 'Evaporation': 76.7, 'Precipitation': 70.7, 'Temperature': 10.2},
    {'day': 'Sun', 'Evaporation': 135.6, 'Precipitation': 175.6, 'Temperature': 20.3}
]

s.plt.line_and_bar_charts(
    data=data, order=0, x='day', 
    bar_names=['Evaporation', 'Precipitation'], 
    line_names=['Temperature'],
    title='rainfall and temperature', 
    x_axis_name='Day', 
    line_axis_name='Temperature',
    line_suffix=' °C', 
    bar_axis_name='Evaporation and precipitacion', 
    bar_suffix=' ml'
)

Variants

By setting the parameter variant to the following values the appearance of the chart can be changed:

PreviousDrag & DropNextWaterfall

Last updated 1 year ago

Was this helpful?

💡
variant="clean"
variant="minimal"