Shimoku docs
  • 🚀QuickStart
    • Installation & Setup
    • Minimal APP example
    • Extended Example
    • Templates & tutorials
  • 🤖Artificial Intelligence
    • Classification
      • Train Classification
        • Train Classification Outputs
      • Predict Classification
        • Predict Classification Outputs
    • Generate Insights
      • Generate Insights Outputs
  • 🛠️Building Web App
    • Environment
      • Overview
      • Environment Variables
    • Management
      • Managing Universes
      • Managing Workspaces
      • Managing Boards
    • Menu
      • Changing the Menu Path
      • Updating the Menu Path
      • Deleting the Menu Path
    • Grid
      • Using the Grid
    • Theming
      • Colors Usage
    • Actions
    • Modals
    • IO
  • 💡Elements
    • Summary
    • Charts
      • Table
        • Buttons Column
        • Filters
        • Search bars
        • Colored labels
      • HTML
        • Raw HTML
        • Beautiful Titles
        • Background Indicators
        • Click to New Tab
        • Box With Button
        • Panel
      • Indicators
        • Indicator
        • Grouped Indicators
        • Vertical Indicators
        • Color by Value
        • Gauge Indicator
        • Indicators with Header
      • Scatter Charts
        • Scatter
        • Scatter with Effect
      • Line Charts
        • Line
        • Predictive Line
        • Segmented Line
        • Marked Line
        • Line With Confidence Area
        • Top Bottom Line Charts
        • Summary Line
      • Area Charts
        • Area
        • Stacked Area
        • Segmented Area
        • Top Bottom Area Charts
      • Bar Charts
        • Bar
        • Stacked Bar
        • Horizontal Bar
        • Stacked Horizontal Bar
        • Zero Centered Bar
      • Pie Charts
        • Pie
        • Doughnut
        • Rose
      • Gauge Charts
        • Shimoku Gauge
        • Speed Gauge
      • Input forms
        • Group chained Inputs
        • List input search
        • Conditional inputs
        • Audio input
        • Drag & Drop
      • Line and Bar
      • Waterfall
      • Annotated Chart
      • Heatmap
      • Radar
      • Sunburst
      • Tree
      • Treemap
      • Sankey Diagram
      • Funnel chart
      • iFrame
    • Composite Template Charts
      • Infographics text bubble
      • Chart and Modal Button
      • Chart and Indicators
    • Data Sets
      • Data Set Filters
    • Create your own charts
      • Free Echarts
      • Bento box
    • Features & Navigation
      • Tabs
      • History navigation & Breadcrumb
  • 🔍Advanced usage
    • CLI
    • Workflow Triggers
    • Code Generation
  • 🌍Cloud & Community
    • Shimoku Cloud
    • Shared links
    • Handling Workspaces & Users
      • User authentication
      • Inviting users
      • Creating users
      • Users with multi-workspace access
  • 🌐Releases
    • 2024
      • v.2.6
      • v.2.5
      • v.2.4
      • v.2.3
        • v.2.3.1
      • v.2.2
        • v.2.2.3
        • v.2.2.2
        • v.2.2.1
      • v.2.1
        • v.2.1.2
        • v.2.1.1
      • v.2.0
        • v.2.0.(1..4)
      • v.1.6
        • v.1.6.1
      • v.1.5
    • 2023
      • v.1.4
        • v.1.4.1
        • v.1.4.2
      • v.1.3
      • v.1.2
        • v.1.2.1
      • v.1.1
        • v.1.1.1
      • v.1.0
        • v.1.0.2
        • v.1.0.1
      • v.0.20
      • v.0.19
      • v.0.18
      • v.0.17
        • v.0.17.1
      • v.0.16
        • v.0.16.3
        • v.0.16.2
        • v.0.16.1
      • v.0.15
      • v.0.14
    • 2022
      • v.0.13
        • v.0.13.3
      • v.0.12
      • v.0.11
      • v.0.10
        • v.0.10.4
        • v.0.10.3
        • v.0.10.1
      • v.0.9
      • v.0.8
      • v.0.7
        • v.0.7.1
      • v.0.6
      • v.0.5
      • v.0.4
      • v.0.3
        • v0.3.2
        • v0.3.1
      • v.0.2
Powered by GitBook
On this page
  • The Method To Use
  • Examples
  • Variants

Was this helpful?

  1. Elements
  2. Charts
  3. Area Charts

Segmented Area

The Segmented Area Chart offers a blend of line and area chart elements, where specific segments or periods are highlighted with color fills between the data line and the x-axis. These colored segments draw attention to particular events or ranges in the data, making it beneficial for emphasizing changes or anomalies within a continuous dataset.

The Method To Use

The method is s.plt.stacked_area()

It must contain the following input variables:

data: Union[str, DataFrame, List[Dict]]
order: int
x: str
y: str

and accepts these parameters as optional:

segments: Optional[list] = None  # Explicit segments 
x_axis_name: Optional[str] = None
y_axis_name: Optional[str] = None
default_color: Tuple[int, int, int] = (255, 0, 0)
title: Optional[str] = None
rows_size: Optional[int] = None
cols_size: Optional[int] = None
padding: Optional[List[int]] = None
show_values: Optional[List[str]] = None
option_modifications: Optional[Dict] = None 
variant: Optional[str] = None
top_area: bool = False  # To specify if the area has to be painted on top 
threshold: Optional[float] = None  # To calculate segments from the value of y
labels: Optional[List[str]] = None  # The labels of the segments

Examples

The next examples use this dataset and labels:

noise_data = pd.DataFrame({
    'x': range(100),
    'y': [
        0.62, 0.66, 0.66, 0.63, 0.61, 0.62, 0.61, 0.49, 0.40, 0.46, 
        0.62, 0.76, 0.72, 0.58, 0.52, 0.62, 0.78, 0.89, 0.84, 0.71, 
        0.62, 0.58, 0.54, 0.56, 0.60, 0.62, 0.63, 0.63, 0.61, 0.61, 
        0.62, 0.65, 0.67, 0.66, 0.64, 0.62, 0.63, 0.69, 0.73, 0.70, 
        0.62, 0.54, 0.50, 0.54, 0.60, 0.62, 0.66, 0.77, 0.84, 0.77, 
        0.62, 0.49, 0.48, 0.57, 0.66, 0.62, 0.56, 0.55, 0.60, 0.64, 
        0.62, 0.56, 0.43, 0.37, 0.47, 0.62, 0.78, 0.86, 0.80, 0.68, 
        0.62, 0.63, 0.68, 0.73, 0.70, 0.62, 0.57, 0.61, 0.70, 0.71, 
        0.62, 0.54, 0.57, 0.67, 0.71, 0.62, 0.49, 0.37, 0.38, 0.50, 
        0.62, 0.75, 0.89, 0.91, 0.78, 0.62, 0.46, 0.30, 0.29, 0.45
    ]
})
labels = [
  'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
  'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'
 ]

The number of labels doesn't need to be equal to the number of segments of area.

The fist example shows the use of the threshold parameter:

s.plt.segmented_area(
    data=noise_data, order=0, x='x', y='y', threshold=0.7, labels=labels
)

The second example show the behavior of the parameters top_area and default_color.

s.plt.segmented_area(
    data=noise_data, order=0, x='x', y='y', threshold=0.7,
    top_area=True, default_color=(0, 0, 255), labels=labels
)

And the final example shows how to define the segments directly, color can be specified in each segment too:

s.plt.segmented_area(
    data=noise_data, order=0, x='x', y='y',
    segments=[(30, 45), (60, 70, 'var(--chart-C1)'), (75, 95, (1, 220, 1))]
)

Variants

By setting the parameter variant to the following values the appearance of the chart can be changed:

PreviousStacked AreaNextTop Bottom Area Charts

Last updated 1 year ago

Was this helpful?

💡
variant="clean"
variant="minimal"