Shimoku docs
  • 🚀QuickStart
    • Installation & Setup
    • Minimal APP example
    • Extended Example
    • Templates & tutorials
  • 🤖Artificial Intelligence
    • Classification
      • Train Classification
        • Train Classification Outputs
      • Predict Classification
        • Predict Classification Outputs
    • Generate Insights
      • Generate Insights Outputs
  • 🛠️Building Web App
    • Environment
      • Overview
      • Environment Variables
    • Management
      • Managing Universes
      • Managing Workspaces
      • Managing Boards
    • Menu
      • Changing the Menu Path
      • Updating the Menu Path
      • Deleting the Menu Path
    • Grid
      • Using the Grid
    • Theming
      • Colors Usage
    • Actions
    • Modals
    • IO
  • 💡Elements
    • Summary
    • Charts
      • Table
        • Buttons Column
        • Filters
        • Search bars
        • Colored labels
      • HTML
        • Raw HTML
        • Beautiful Titles
        • Background Indicators
        • Click to New Tab
        • Box With Button
        • Panel
      • Indicators
        • Indicator
        • Grouped Indicators
        • Vertical Indicators
        • Color by Value
        • Gauge Indicator
        • Indicators with Header
      • Scatter Charts
        • Scatter
        • Scatter with Effect
      • Line Charts
        • Line
        • Predictive Line
        • Segmented Line
        • Marked Line
        • Line With Confidence Area
        • Top Bottom Line Charts
        • Summary Line
      • Area Charts
        • Area
        • Stacked Area
        • Segmented Area
        • Top Bottom Area Charts
      • Bar Charts
        • Bar
        • Stacked Bar
        • Horizontal Bar
        • Stacked Horizontal Bar
        • Zero Centered Bar
      • Pie Charts
        • Pie
        • Doughnut
        • Rose
      • Gauge Charts
        • Shimoku Gauge
        • Speed Gauge
      • Input forms
        • Group chained Inputs
        • List input search
        • Conditional inputs
        • Audio input
        • Drag & Drop
      • Line and Bar
      • Waterfall
      • Annotated Chart
      • Heatmap
      • Radar
      • Sunburst
      • Tree
      • Treemap
      • Sankey Diagram
      • Funnel chart
      • iFrame
    • Composite Template Charts
      • Infographics text bubble
      • Chart and Modal Button
      • Chart and Indicators
    • Data Sets
      • Data Set Filters
    • Create your own charts
      • Free Echarts
      • Bento box
    • Features & Navigation
      • Tabs
      • History navigation & Breadcrumb
  • 🔍Advanced usage
    • CLI
    • Workflow Triggers
    • Code Generation
  • 🌍Cloud & Community
    • Shimoku Cloud
    • Shared links
    • Handling Workspaces & Users
      • User authentication
      • Inviting users
      • Creating users
      • Users with multi-workspace access
  • 🌐Releases
    • 2024
      • v.2.6
      • v.2.5
      • v.2.4
      • v.2.3
        • v.2.3.1
      • v.2.2
        • v.2.2.3
        • v.2.2.2
        • v.2.2.1
      • v.2.1
        • v.2.1.2
        • v.2.1.1
      • v.2.0
        • v.2.0.(1..4)
      • v.1.6
        • v.1.6.1
      • v.1.5
    • 2023
      • v.1.4
        • v.1.4.1
        • v.1.4.2
      • v.1.3
      • v.1.2
        • v.1.2.1
      • v.1.1
        • v.1.1.1
      • v.1.0
        • v.1.0.2
        • v.1.0.1
      • v.0.20
      • v.0.19
      • v.0.18
      • v.0.17
        • v.0.17.1
      • v.0.16
        • v.0.16.3
        • v.0.16.2
        • v.0.16.1
      • v.0.15
      • v.0.14
    • 2022
      • v.0.13
        • v.0.13.3
      • v.0.12
      • v.0.11
      • v.0.10
        • v.0.10.4
        • v.0.10.3
        • v.0.10.1
      • v.0.9
      • v.0.8
      • v.0.7
        • v.0.7.1
      • v.0.6
      • v.0.5
      • v.0.4
      • v.0.3
        • v0.3.2
        • v0.3.1
      • v.0.2
Powered by GitBook
On this page
  • The Method To Use
  • Examples
  • 1. Default Configuration
  • 2. Customization And Context
  • Variants

Was this helpful?

  1. Elements
  2. Charts
  3. Scatter Charts

Scatter

A scatter plot, or chart, uses dots to represent numerical values for two variables. The position of each dot on the horizontal and vertical axis indicates the values for each data point. Scatter plots are used to verify relationships between variables.

The Method To Use

The method is s.plt.scatter().

It must contain the following input variables:

order: int 
point_fields: Union[List[Tuple[str, str]], Tuple[str, str]]
data: Union[str, DataFrame, List[Dict]]

Accepts the following input variables as optional:

x_axis_name: Optional[str] 
y_axis_name: Optional[str]
title: Optional[str]
rows_size: Optional[int]
cols_size: Optional[int]
padding: Optional[List[int]]
show_values: Optional[List[str]]
option_modifications: Optional[Dict]
variant: Optional[str]

Examples

1. Default Configuration

If the code runs with data, menu_path and axes configured as this:

# https://figshare.com/articles/dataset/Age_height_and_weight_raw_data/16920130
df = pd.read_csv('../data/scatter_test.csv')[
    ['AgeGroup1', 'AgeGroup2', 'AgeGroup3', 'AllGroupAge', 'WeightGroup1',
    'WeightGroup2', 'WeightGroup3', 'AllGroupWeight']
]

s.plt.scatter(
    data=df, order=0, point_fields=[
        ('AgeGroup1', 'WeightGroup1'), ('AgeGroup2', 'WeightGroup2'),
        ('AgeGroup3', 'WeightGroup3'), ('AllGroupAge', 'AllGroupWeight')],
)

2. Customization And Context

It is possible to personalize the title of the chart, adding data points, name for each axis, the legend, size and space occupied. One example could be obtained using:

# https://figshare.com/articles/dataset/Age_height_and_weight_raw_data/16920130
df = pd.read_csv('../data/scatter_test.csv')[
    ['AgeGroup1', 'AgeGroup2', 'AgeGroup3', 'AllGroupAge', 'WeightGroup1',
    'WeightGroup2', 'WeightGroup3', 'AllGroupWeight']
]

s.plt.scatter(
    data=df, order=0, point_fields=[
        ('AgeGroup1', 'WeightGroup1'), ('AgeGroup2', 'WeightGroup2'),
        ('AgeGroup3', 'WeightGroup3'), ('AllGroupAge', 'AllGroupWeight')],
    title='Age Weight correlation study',
    x_axis_name='Age',
    y_axis_name='Weight',
)

Variants

By setting the parameter variant to the following values the appearance of the chart can be changed:

PreviousScatter ChartsNextScatter with Effect

Last updated 1 year ago

Was this helpful?

💡
The scatter plot in the default configuration.
Customized scatter chart
variant="clean"
variant="minimal"