Segmented Line

This type of chart provides a detailed visualization of data points categorized by varying segments on the y-axis. Each segment is delineated by a unique color, making it straightforward to distinguish between different data ranges or categories within the continuous line. The segmented line chart is especially beneficial when aiming to emphasize specific ranges or values in your data on the y-axis, facilitating rapid analysis of trends within those segments.

The Method To Use

The method is s.plt.segmented_line().

It must contain the following input variables:

order: int, 
x: str, 
y: Union[str, List[str]],
data: Optional[Union[str, DataFrame, List[Dict]]],

Accepts the following input variables as optional:

x_axis_name: Optional[str] = None, 
y_axis_name: Optional[str] = None,
rows_size: Optional[int] = None, 
cols_size: Optional[int] = None,
padding: Optional[List[int]] = None, 
title: Optional[str] = None,
marking_lines: Optional[List[int]] = None, # marks to separate the segments in y axis
range_colors: Optional[List[str]] = None,  # colors for each axis
option_modifications: Optional[Dict] = None,
variant: Optional[str] = None

Examples

Both examples use this data set:

beiging_aqi_len = 100
beiging_aqi = requests.get(
    url='https://echarts.apache.org/examples/'
        'data/asset/data/aqi-beijing.json').json()[-beiging_aqi_len:]
df = pd.DataFrame([
    {
        'date': beiging_aqi[i][0],
        'y': beiging_aqi[i][1],
        'y_displaced': beiging_aqi[(i + 10) % beiging_aqi_len][1],
        'y_multiplied': beiging_aqi[i][1] * 2,
    } for i in range(beiging_aqi_len)
])

The first example shows how to use the parameters marking_lines and range_colors:

s.plt.segmented_line(
    data=df, order=0, 
    x='date', y='y', 
    title="Beijing's Air Quality Index",
    marking_lines=[0, 50, 100, 150, 200, 300], 
    range_colors=['green', 'yellow', 'orange', 'red', 'purple', 'maroon'],
    x_axis_name='Date', y_axis_name='AQI'
)

The second example shows how the segments behave with multiple series, and the default configuration of colors:

s.plt.segmented_line(
    data=df, order=0,
    x='date', y=['y', 'y_displaced', 'y_multiplied'],
    marking_lines=[0, 100, 200, 300, 450, 700]
)

Variants

By setting the parameter variant to the following values the appearance of the chart can be changed:

Last updated