Shimoku docs
  • 🚀QuickStart
    • Installation & Setup
    • Minimal APP example
    • Extended Example
    • Templates & tutorials
  • 🤖Artificial Intelligence
    • Classification
      • Train Classification
        • Train Classification Outputs
      • Predict Classification
        • Predict Classification Outputs
    • Generate Insights
      • Generate Insights Outputs
  • 🛠️Building Web App
    • Environment
      • Overview
      • Environment Variables
    • Management
      • Managing Universes
      • Managing Workspaces
      • Managing Boards
    • Menu
      • Changing the Menu Path
      • Updating the Menu Path
      • Deleting the Menu Path
    • Grid
      • Using the Grid
    • Theming
      • Colors Usage
    • Actions
    • Modals
    • IO
  • 💡Elements
    • Summary
    • Charts
      • Table
        • Buttons Column
        • Filters
        • Search bars
        • Colored labels
      • HTML
        • Raw HTML
        • Beautiful Titles
        • Background Indicators
        • Click to New Tab
        • Box With Button
        • Panel
      • Indicators
        • Indicator
        • Grouped Indicators
        • Vertical Indicators
        • Color by Value
        • Gauge Indicator
        • Indicators with Header
      • Scatter Charts
        • Scatter
        • Scatter with Effect
      • Line Charts
        • Line
        • Predictive Line
        • Segmented Line
        • Marked Line
        • Line With Confidence Area
        • Top Bottom Line Charts
        • Summary Line
      • Area Charts
        • Area
        • Stacked Area
        • Segmented Area
        • Top Bottom Area Charts
      • Bar Charts
        • Bar
        • Stacked Bar
        • Horizontal Bar
        • Stacked Horizontal Bar
        • Zero Centered Bar
      • Pie Charts
        • Pie
        • Doughnut
        • Rose
      • Gauge Charts
        • Shimoku Gauge
        • Speed Gauge
      • Input forms
        • Group chained Inputs
        • List input search
        • Conditional inputs
        • Audio input
        • Drag & Drop
      • Line and Bar
      • Waterfall
      • Annotated Chart
      • Heatmap
      • Radar
      • Sunburst
      • Tree
      • Treemap
      • Sankey Diagram
      • Funnel chart
      • iFrame
    • Composite Template Charts
      • Infographics text bubble
      • Chart and Modal Button
      • Chart and Indicators
    • Data Sets
      • Data Set Filters
    • Create your own charts
      • Free Echarts
      • Bento box
    • Features & Navigation
      • Tabs
      • History navigation & Breadcrumb
  • 🔍Advanced usage
    • CLI
    • Workflow Triggers
    • Code Generation
  • 🌍Cloud & Community
    • Shimoku Cloud
    • Shared links
    • Handling Workspaces & Users
      • User authentication
      • Inviting users
      • Creating users
      • Users with multi-workspace access
  • 🌐Releases
    • 2024
      • v.2.6
      • v.2.5
      • v.2.4
      • v.2.3
        • v.2.3.1
      • v.2.2
        • v.2.2.3
        • v.2.2.2
        • v.2.2.1
      • v.2.1
        • v.2.1.2
        • v.2.1.1
      • v.2.0
        • v.2.0.(1..4)
      • v.1.6
        • v.1.6.1
      • v.1.5
    • 2023
      • v.1.4
        • v.1.4.1
        • v.1.4.2
      • v.1.3
      • v.1.2
        • v.1.2.1
      • v.1.1
        • v.1.1.1
      • v.1.0
        • v.1.0.2
        • v.1.0.1
      • v.0.20
      • v.0.19
      • v.0.18
      • v.0.17
        • v.0.17.1
      • v.0.16
        • v.0.16.3
        • v.0.16.2
        • v.0.16.1
      • v.0.15
      • v.0.14
    • 2022
      • v.0.13
        • v.0.13.3
      • v.0.12
      • v.0.11
      • v.0.10
        • v.0.10.4
        • v.0.10.3
        • v.0.10.1
      • v.0.9
      • v.0.8
      • v.0.7
        • v.0.7.1
      • v.0.6
      • v.0.5
      • v.0.4
      • v.0.3
        • v0.3.2
        • v0.3.1
      • v.0.2
Powered by GitBook
On this page
  • The Method To Use
  • Examples
  • 1. Default Configuration
  • 2. Customization And Context
  • Interesting Usages
  • Variants

Was this helpful?

  1. Elements
  2. Charts
  3. Bar Charts

Bar

A bar chart uses vertical bars to show comparisons between categories of data. Vertical bar charts illustrate sizes of data using different bar heights.

The Method To Use

The method is s.plt.bar()

It must contain the following input variables:

order: int
x: str
data: Union[str, DataFrame, List[Dict]]

And accepts the following input variables as optional:

y: Optional[List[str]]
x_axis_name: Optional[str]
y_axis_name: Optional[str]
title: Optional[str]
rows_size: Optional[int]
cols_size: Optional[int]
padding: Optional[List[int]]
show_values: Optional[List[str]]
option_modifications: Optional[Dict]

Examples

1. Default Configuration

By default the chart will have rows_size=2 and cols_size=12, also it will have no padding applied. An example on how to use the default configuration is:

data = [
    {'date': dt.date(2021, 1, 1), 'x': 1, 'y': 10},
    {'date': dt.date(2021, 1, 2), 'x': 2, 'y': 8},
    {'date': dt.date(2021, 1, 3), 'x': 3, 'y': 10},
    {'date': dt.date(2021, 1, 4), 'x': 4, 'y': 2},
    {'date': dt.date(2021, 1, 5), 'x': 5, 'y': 14},
]

s.plt.bar(data=data, order=0, x='date')

2. Customization And Context

It is possible to personalize the title of the chart, name of each axis, the legend, changing size and add padding. One example could be obtained using:

data = [
    {'date': dt.date(2021, 1, 1), 'store 1': 5, 'store 2': 10},
    {'date': dt.date(2021, 2, 1), 'store 1': 6, 'store 2': 8},
    {'date': dt.date(2021, 3, 1), 'store 1': 4, 'store 2': 10},
    {'date': dt.date(2021, 4, 1), 'store 1': 7, 'store 2': 2},
    {'date': dt.date(2021, 5, 1), 'store 1': 3, 'store 2': 14},
    {'date': dt.date(2021, 6, 1), 'store 1': 7, 'store 2': 12},
]

s.plt.bar(
    data=data, order=0,
    x='date', rows_size=2, cols_size=10,
    padding='0,1,0,1',
    x_axis_name='date',
    y_axis_name='revenue / store',
    title='Revenue per store, first half - 2021',
)

And if you want to show just one variable, for example showing the average height of a thousand trees in the year 2021, you can provide the following data:

data = [
    {'date': 'Jan', 'Height': 3},
    {'date': 'Feb', 'Height': 3.5},
    {'date': 'Mar', 'Height': 4.2},
    {'date': 'Apr', 'Height': 5},
    {'date': 'May', 'Height': 5.8},
    {'date': 'Jun', 'Height': 6.3},
]

s.plt.bar(
    data=data, order=0, x='date', rows_size=2, cols_size=10,
    padding='0,1,0,1', x_axis_name='month', y_axis_name='height (m)',
    title='Evolution: Average Height of 1000 Trees - 2021',
)

Interesting Usages

  • Visualizing survey results: Bar charts are a great way to display the results of a survey. For example, you could use a bar chart to show the percentage of people who answered "yes," "no," or "maybe" to a particular question.

  • Comparing data: Bar charts are also useful for comparing data. For example, you could use a bar chart to compare the sales of different products over a given time period.

Variants

By setting the parameter variant to the following values the appearance of the chart can be changed:

Featured Content

Changing the Menu Path The menu_path can be modified.

Using the Grid

It is possible to use any number of rows.

PreviousBar ChartsNextStacked Bar

Last updated 1 year ago

Was this helpful?

💡
Bar chart in the default configuration
Bar chart with padding title and axis names.
Bar chart for one variable, fully customized.
Survey results
Comparative sales of products
variant="clean"
variant="minimal"
variant="thin"
variant="clean thin"
variant="minimal thin"
variant="shadow"
variant="clean shadow"
variant="minimal shadow"