Shimoku docs
  • 🚀QuickStart
    • Installation & Setup
    • Minimal APP example
    • Extended Example
    • Templates & tutorials
  • 🤖Artificial Intelligence
    • Classification
      • Train Classification
        • Train Classification Outputs
      • Predict Classification
        • Predict Classification Outputs
    • Generate Insights
      • Generate Insights Outputs
  • 🛠️Building Web App
    • Environment
      • Overview
      • Environment Variables
    • Management
      • Managing Universes
      • Managing Workspaces
      • Managing Boards
    • Menu
      • Changing the Menu Path
      • Updating the Menu Path
      • Deleting the Menu Path
    • Grid
      • Using the Grid
    • Theming
      • Colors Usage
    • Actions
    • Modals
    • IO
  • 💡Elements
    • Summary
    • Charts
      • Table
        • Buttons Column
        • Filters
        • Search bars
        • Colored labels
      • HTML
        • Raw HTML
        • Beautiful Titles
        • Background Indicators
        • Click to New Tab
        • Box With Button
        • Panel
      • Indicators
        • Indicator
        • Grouped Indicators
        • Vertical Indicators
        • Color by Value
        • Gauge Indicator
        • Indicators with Header
      • Scatter Charts
        • Scatter
        • Scatter with Effect
      • Line Charts
        • Line
        • Predictive Line
        • Segmented Line
        • Marked Line
        • Line With Confidence Area
        • Top Bottom Line Charts
        • Summary Line
      • Area Charts
        • Area
        • Stacked Area
        • Segmented Area
        • Top Bottom Area Charts
      • Bar Charts
        • Bar
        • Stacked Bar
        • Horizontal Bar
        • Stacked Horizontal Bar
        • Zero Centered Bar
      • Pie Charts
        • Pie
        • Doughnut
        • Rose
      • Gauge Charts
        • Shimoku Gauge
        • Speed Gauge
      • Input forms
        • Group chained Inputs
        • List input search
        • Conditional inputs
        • Audio input
        • Drag & Drop
      • Line and Bar
      • Waterfall
      • Annotated Chart
      • Heatmap
      • Radar
      • Sunburst
      • Tree
      • Treemap
      • Sankey Diagram
      • Funnel chart
      • iFrame
    • Composite Template Charts
      • Infographics text bubble
      • Chart and Modal Button
      • Chart and Indicators
    • Data Sets
      • Data Set Filters
    • Create your own charts
      • Free Echarts
      • Bento box
    • Features & Navigation
      • Tabs
      • History navigation & Breadcrumb
  • 🔍Advanced usage
    • CLI
    • Workflow Triggers
    • Code Generation
  • 🌍Cloud & Community
    • Shimoku Cloud
    • Shared links
    • Handling Workspaces & Users
      • User authentication
      • Inviting users
      • Creating users
      • Users with multi-workspace access
  • 🌐Releases
    • 2024
      • v.2.6
      • v.2.5
      • v.2.4
      • v.2.3
        • v.2.3.1
      • v.2.2
        • v.2.2.3
        • v.2.2.2
        • v.2.2.1
      • v.2.1
        • v.2.1.2
        • v.2.1.1
      • v.2.0
        • v.2.0.(1..4)
      • v.1.6
        • v.1.6.1
      • v.1.5
    • 2023
      • v.1.4
        • v.1.4.1
        • v.1.4.2
      • v.1.3
      • v.1.2
        • v.1.2.1
      • v.1.1
        • v.1.1.1
      • v.1.0
        • v.1.0.2
        • v.1.0.1
      • v.0.20
      • v.0.19
      • v.0.18
      • v.0.17
        • v.0.17.1
      • v.0.16
        • v.0.16.3
        • v.0.16.2
        • v.0.16.1
      • v.0.15
      • v.0.14
    • 2022
      • v.0.13
        • v.0.13.3
      • v.0.12
      • v.0.11
      • v.0.10
        • v.0.10.4
        • v.0.10.3
        • v.0.10.1
      • v.0.9
      • v.0.8
      • v.0.7
        • v.0.7.1
      • v.0.6
      • v.0.5
      • v.0.4
      • v.0.3
        • v0.3.2
        • v0.3.1
      • v.0.2
Powered by GitBook
On this page
  • The Method To Use
  • Examples
  • Variants
  • Interesting Usages

Was this helpful?

  1. Elements
  2. Charts
  3. Bar Charts

Stacked Bar

A stacked bar chart shows the composition of each category in a stacked bar, with each segment representing a sub-category.

The Method To Use

The method is s.plt.stacked_bar()

It must contain the following input variables:

x: str
order: int
data: Union[str, DataFrame, List[Dict]]

And accepts the following input variables as optional:

y: Optional[List[str]]
x_axis_name: Optional[str]
y_axis_name: Optional[str]
title: Optional[str]
rows_size: Optional[int]
cols_size: Optional[int]
padding: Optional[List[int]]
show_values: Optional[List[str]]
option_modifications: Optional[Dict]

Examples

An example of how the function expects the data to be represented is the following:

Segment, Price, Client category, Age, Geo, Acquisitive power, Family size, Policie tenure, Labour contract
Hogar, 21, 5, 12, 17, 3, 14, 3, 6
Móvil, 23, 16, 16, 14, 4, 2, 19, 12
Dental, 26, 21, 14, 17, 1, 2, 6, 3
Viajes, 24, 22, 15, 17, 8, 5, 15, 4
Accidentes, 22, 12, 18, 17, 5, 6, 1, 5
Seguro de vida, 22, 21, 19, 12, 7, 3, 2, 9
Jurídico, 25, 21, 13, 12, 10, 6, 13, 6
Dental Plus, 24, 4, 17, 17, 7, 9, 2, 3
Jubilación, 20, 4, 19, 17, 2, 2, 10, 8
Salud, 27, 24, 17, 17, 12, 1, 4, 1

Assuming that the previously shown data is stored in the file 'file.csv'.

The function has the option to hide or show each level by using the parameter show_values where the columns of the dataset that will show it's values have to be specified, by default it will not show any values.

When executing the following code:

s.plt.stacked_bar(
    data=pd.read_csv('file.csv'), x="Segment",
    x_axis_name='Distribution and weight of the Drivers',
    order=0, show_values=['Price'],
)

Variants

By setting the parameter variant to the following values the appearance of the chart can be changed:

Interesting Usages

  • Showing proportions: Stacked bar charts are ideal for showing how a category is divided into subcategories. For example, you could use a stacked bar chart to show how a company's revenue by month is divided into different product categories.

  • Comparing data: Stacked bar charts can also be used to compare data between different categories. For example, you could use a stacked bar chart to compare the revenue generated by different countries.

PreviousBarNextHorizontal Bar

Last updated 1 year ago

Was this helpful?

💡
Stacked bar chart with percentages calculated and hidden labels
variant='clean'
variant='minimal'
variant="thin"
variant="clean thin"
variant="minimal thin"
variant="shadow"
variant="clean shadow"
variant="minimal shadow"
Evolution of revenue by month, total and in percentages
Revenue by country total and percentages